
①
Lecture 9 : handou theory of phase transitions

Up until now we focused only on gas-liquid phase transitions. Here, a sample
prepared with overall density p can phase separate into a dilute gas
withdensity Pg and a dense liquid with density Pl. The density here

plays the role of an order parameter ,-> a quantity that tells inwhich
phase one residess

transition.
Morgue

sosim
second-order phase transition

Let's illustrate this idea with a simple model.

Take a lattice with on each lattice site a"spin" with value Si -#

E . g.4 Energy of a spin configuration :
& Ge N (Ising model
↓ EsiS) =-ji 1920
o ↑

Wilhelm henz,
magi t local external magneticN lattice sites . coupling of

parameter single field.
Spin:

When coupling parameter Jij <0 =) antiferromagnetic order.

Jijso => promotes ferromagnetic order.
So the ground state (T

=0) : ↑449 ↑↑
↑ ↑44 ↓ 4 ↓ ↑
4444 ↑ ↓It

ferromagnet antiferromagnet.
When we "turn on"temperature this ordered state is destroyed
=> T+ a most stable state is a "random" Spin state -

Paramagnet : acquire magnetization is ame direction as external
magnetic field.



②
Diamagnet : Acquires magnetization opposite to theexternal magnetic field.

Here
, we focus on the transition from paramagnet to ferromagnet.

So let's consider the Tsing model with just nearest neighbour interactions :
E(s :3) =-glsisig Co external magnetic field).

Canonical partition function : E(N .D , PMB)ZeBEC

- solvable in 1D (transfer-Sij
matrix method)

solvable in ID consager (
No analytical solution in 3DM.
However , we can gain some insights by introducing the magnetization :

per site : m =Usi EMS spatially averagedin ↓
constant magn-field

Note that : (si)=(i)eBB
z-
~-
= Hence (m/B):BB
=-

N
,T .

8 : free energy per site.

Since ,
we cannot compute E analytically ,

we need to resort to approximations

WriteSi = (5) + Osi and keep only contributions up to quadratic
order in JSi. (fluctuation expansion)



↳
coordination number

③
Within this approximation: Disj=See

- + 1538s + 25sjr0(bsi)
So we find:

EGsis) = [JNzLs-(S +MB)si
uBmo)

Each spin feels an external magnetic field but also the average fieldcaused by surrounding spins.

Within mean-field approximation , we find :
2 = [2cosh (BJz(s) + BuB) exp(-EB()SM
Some find : (s) = tank (BJz() + BMB)

*

(self consistency condition
same is found of we compute free energy F((s))

=
Now

,
let's consider B = 0 and set units : M= = Sm

Taylor expansion of (4) => (m= BJz(M) - - (Bgzms) +@Gm)
Three solutions

mo = 0 (paramagnetic solution

my =
=N3 ; t =E : Tz/k

TSTc : only one real solution .
TT>: three solutions .

Free energy can
be expanded for small (m) :

F = Nkp(T-Tc)()+ + O(m) - NABTlog2.



⑭

=> Fy(m)) = constant + Eo(t)>+m>+ ....

When OCT)
, BLT) 20(m > = o global minimum

when OCT) 0 => <my = Est global minimum).
Mental picture :

Norther
Symmetric under sit-si Xi
This is an example of spontaneous symmetry breaking
-> Ground state has different symmetry from the

symmetry of the underlying Hamiltonian.
But wouldn't we expect that(m) =09
So in presence of external magnetic field : (say B >O) => <m+> global
minimum belowTo

n[m)
- TaTc but N+!
-TCTc .-t but finiti

So:



⑤
How can this non-analytic behaviour occur ?

B can only le non-analytic if Ne

Therefore ,

(m) (B = 0) =G(m) (D) to
zon analytica

Lim lim (m)(B S ↓
phase transition.

Symmetry-broken state is stabilised by surface tension
= Ex- a in them

limit -

We call Fa(m) = Eo(t)m2 + YB(T)m" +....
the Landau free energy = minimum gives the moststable phase.

Gan be set up phenomenologically Sit-s : symmetry translates
↓hat metis should inherit this symmetry

F(m) = F((-m) .

Note that in MF approximation one can show that amounts to

(sisj) =< :](j) Because: U=
> check

but also U=< Y El Sis] S
In MF approximation one neglect spin-spin correlations. Howdo we

go beyond MF ?
We introduce a fluctuating

2exiShis) field m that on averag,

a
is equal to <iD

Define hi = BuBi i
. e .
[mi) =(i) .



⑥
and Kij = By for ij nearest neighbours and zero otherwise.

So we can write:

z=exp[kjj
G

Using that : exp[iKijj]dmiexpmKi
+Isimi]

The partition function becomes : Hubbard- Stratonovich
[ transformation.

z.mimikimmthil
-

Now we can perform each spin feels
the summation over spins : a fluctuating

field mith:
Omitting irrelevant constants :

2 = /DmexpEBFIm]) Dm = Thdmi
&
in continuum limit mi

+ m(r) then Som ( ... )
is called a functional integral.

With

[m]=mikimj-Zen cost)mithi)
het's make a similarity transformation : My = Z kijing
this will only /Dm + [S8m) , so



⑰
> BFc[m]=Kijj-Zlcosh(Kijj
In continuum (i . e- long wavelength limit

: Kijnj =S )=)
(on
; is real . (

with KIti) = KI cos(koa) = [k[z-a-k +O(k"))
:= 14 y ,z

So in continuum limit ato N ->

and expanding the In cosh ( ... ) ,
we find :

BEIm] = ESdGy(mirR + &(i) m() + Em()" +... )

z =SDm e-BEctm]
I

· h(x)m(z)

Saddle-point approximation : integral is dominated where -BEL[m]
is maximal : Zwe-BFEm)]

~ ith <m> givenbyIm
=m

=> same result as the mean-field approximation
We can generalise the result to the so called (classical) Heisenberg
modeli

H =- ·j This hamiltonian is invariant

under 5 : + R . j
Then we find. & S0(s)

z =SDe- PETm]
crotation matrix)



⑳
with Landanfree energy :

BFE] :Sati · [o(t)-F-]m() + EBITh" +...] Ginzburgo
theory

Noticenowthat this free energy is invariant under rotationoa
So

atpointin
So we have situation :

↑ Tc. (i) to T >Tc

4444 ↑
(i) =0.

a ↑ - 4

↑ E

In contrast to going case where Hamiltonian (in absence of external
magnetic field) is invariant under E (discrete symmetry)
We have no an "infiniteamount" ofground states with equal energy.
If Hamiltonian is invariant under a continuous symmetry
=> there are excitations that costnoenergy /Goldstone

mosta
So for TCT, we can infinitesimally rotate the system for TCTC.
Local spin rotation result in a spin wave with dispersion relation

tw = gl2 (magnon) tho goldstone
mode

,



⑨
Up until now we talked about magnets where Hamiltonian is
invariant under global rotations-
But what about particles that look like :

op Now the orientation of each particle is

08% not a good order parameter.

6000 .
- A

-> There is an up-down symmetry.
- N

v

collection
disordered state : isotropic liquid Iof rods.

=> Nematic Liquid crystal : partially ordered system where
translational symmetry is not broken ,

but rotational

symmetry is broken with a "residual" up-down symmetry

=> Order parameter is a tensor @ automatically satisfies

Dop = (op) =(iip-up-down synt e
& orientation of particle ibecause in eigen representationerectors

- # & &B= 1,y,
z .

Qu = ES(neup-)Ledes"-ee)
--

⑭stuniaxial order "biaxial order"

We can now write invariants : 4
rod orders

QupQpe ; Q QQ
in aplane

Tre ; tra



⑳
Based on symmetry principles (although in principle also derivable from
field theory) , we find the handan-deGennes free energy density

#(2) = E(T-T
* )Tr@+ T=

V
(a , 60 .)

Assume uniaxial order (P= 0) : (B(0)
=>J = ja(T-T)s+Da

↓
cubic

First order phase transition

⑭·
-

-


